COST-EFFECTIVENESS OF INSULIN DEGLUDEC (U100) COMPARED WITH INSULIN GLARGINE (U100) IN GREECE

Yfantopoulos J.¹, Chantzaras A.¹

School of Economics and Political Sciences, National and Kapodistrian University of Athens, Greece

Introduction

- Diabetes mellitus (DM) is a chronic disorder characterized by hyperglycaemia.
- Despite the advances in its treatment over the past few decades, DM continues to impose a significant clinical burden, while the economic consequences to the health care system are substantial. The DM-related healthcare spending in Greece was estimated to be USD 3.9 billion in 2010, i.e. approximately 9% of the total healthcare expenditure, and it is projected to rise to USD 4.6 billion by 2030 [1].

Objective

• To evaluate the cost-effectiveness of insulin

Fig. 1. Cost-effectiveness model overview

Methods

degludec (IDeg U100) versus insulin glargine (IGlar U100) in patients with: type 1 diabetes using a basal bolus regimen (T1DM_{B/B}), and type 2 diabetes receiving basal oral treatment $(T2DM_{BOT})$ or basal-bolus therapy $(T2DM_{B/B})$ in Greece.

Methods

- Meta-analysis data from phase 3a clinical studies [2] were used in a simple and transparent short-term cost-utility model (Fig. 1).
- The costs and effects of treatment with IDeg (U100) versus IGlar (U100) were calculated annually.
- Quality-adjusted life-year (QALYs) were estimated by applying a disutility representing a reduction in quality of life per hypoglycaemic event, and an estimate of the utility benefit of the flexible dosing time option with IDeg (U100).
- The analysis was conducted from the healthcare payer perspective, and costs were based on the respective reimbursement prices of National Organization For Health Care Benefits Provision (EOPYY, June 2016). • One-way and probabilistic sensitivity analyses were performed to examine the robustness of the results.

Abbreviations: Δ , change in; HCP, healthcare professional; HRQoL, health-related quality of life; ICER, incremental cost-effectiveness ratio; IDeg, insulin degludec; IGlar, insulin glargine; QALY, quality-adjusted life year; SMBG, self-monitored blood glucose.

Table 1. Base case cost-effectiveness results

	Incremental cost (∆cost=IDeg–IGlar)	Incremental effectiveness (ΔQALYs=IDeg–IGlar)	ICER (Δcost/ΔQALY)
Γ1DM _{B/B}	175.81 €	0.0198	8,883 €
Г2DM _{вот}	125.42 €	0.0233	5,379 €
Γ2DM _{B/B}	574.02 €	0.0353	16,265 €

Results

Table 2. ICER results of the sensitivity analyses

Healthcare payer perspective			ICER (€ per QALY gained)			
			T2DM _{BOT}	T2DM _{B/B}		
Hypoglycaemia disutility						
Base case: Severe = 0.0565 , non-severe	Base case +50%	6.587€	3.949 €	11.495€		
turnal = 0.0041 and non-severe noc-	Base case -50%	13.633€	8.431 €	27.804 €		
Injection frequency						
Base case: IGlar 1/day, IDeg 1/day	IGlar: 2/day	Dominant	Dominant	9.804€		
Insulin doses						
Base case: T1DM _{B/B} basal 13% differ- ence and bolus 12% difference, T2DM _{BOT} basal 10% difference and T2DM _{B/B} arm basal 8% difference in mean doses, respectively	Equal mean doses	16.257€	10.647 €	12.682€		
Hypoglycaemia rates						
Base case: Nocturnal hypoglycaemia: 13.36%, 24.66% and 13.43% for	Nocturnal proportion of hypoglycae- mia increased by 25%	7.542€	4.727 €	15.743 €		
T1DM _{B/B} , T2DM _{BOT} and T2DM _{B/B} , respectively	Nocturnal proportion of hypoglycae- mia decreased by 25%	10.788 €	6.224 €	16.823 €		
Hypoglycaemia direct costs						
Base case costs based on clinical trial re-	Cost per hypoglycaemic event +20%	8.880€	4.846€	16.251 €		
source use	Cost per hypoglycaemic event –20%	8.885€	5.912 €	16.280€		
Base case of additional SMBG tests per	Fulcher et al. [3]: 6,7 and 6 for T1DM _{B/B} , and T2DM _{B/} B, respectively	8.542€	n/a	15.697€		
week: 1,46, 1,91, and 1,98 for T1D $\dot{M}_{B/B}$, T2D M_{BOT} and T2D $M_{B/B}$ respectively	Orozco-Beltran et al.[4]: 5, 6 and 7.1 for T1DM _{B/B} , T2DM _{BOT} and T2DM _{B/} , R_{B} , respectively.	8.652€	5.173 €	15.686€		
SMBG rates per week (IDeg/IGlar)						
Base case: T1DM _{B/B} , 7/7; T2DM _{BOT} and	T2DM _{BOT} and T2DM _{B/B} , $2/7$	n/a	6.777€	17.189€		
$TZDM_{B/B}, T//$	No difference in testing	n/a	13.770€	21.804€		
Thex utility	Even a st al [5], TODM $\downarrow 0.016 \dots 1$					
	Evans et al. [5]: $12DN_{BOT} + 0.016$ and $T2DM_{B/B} + 0.013$	n/a	3.764€	13.573€		
Base case: +0.006 utility achieved by 100% of the population	50% use the flexible dose option (0.003 utility)	10.469€	6.173 €	17.777€		
	0% use the flexible dose option (0.000 utility)	12.746€	7.242 €	19.597€		

Results

- Base case incremental cost-effectiveness ratios (ICERs) were estimated at 8,883 € per QALY in the T1DM_{B/B}, at 5,379 \in per QALY in the T2DM_{BOT} and at 16,265 \in per QALY in the T2DM_{B/B} treatment groups (Table 1).
- Sensitivity analyses indicated that the results were quite robust to reasonable changes in model parameters, with all of the calculated ICERs falling below a commonly accepted willingness-to-pay (WTP) threshold (33,000 € per QALY gained) in all therapy regimens (Table 2).
- The probability that IDeg was cost-effective compared with IGlar was 68.5%, 98%, and 88.5% in the T1DM_{B/B}, T2DM_{BOT} and $T2DM_{B/B}$ therapy respectively regiments, (Fig. 2).

Conclusions

• IDeg (U100) was found to be a highly costeffective alternative therapy option compared with IGlar (U100) in T1DM_{B/B}, T2DM_{BOT} and $T2DM_{B/B}$ treatment groups in Greece from the healthcare payer perspective over an 1-year time horizon.

References

- [1] Zhang P, Zhang X, Brown J, et al. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010; 87: 293-301.
- [2] Vora J, Christensen T, Rana A, et al. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: a metaanalysis of endpoints in phase 3a trials. Diabetes therapy. 2014; 5: 435-46.
- [3]Fulcher G, Singer J, Castaneda R, et al. The psychosocial and financial impact of non-severe hypoglycemic events on people with diabetes: two international surveys. J Med Econ. 2014; 17: 751-61.
- [4] Orozco-Beltran D, Mezquita-Raya P, Ramirez de Arellano A, et al. Self-reported frequency and impact of hypoglycemic events in Spain. Diabetes therapy : research, treatment and education of diabetes and related disorders. 2014; 5: 155-68.
- [5] Evans M, Jensen HH, Bøgelund M, et al. Flexible insulin dosing improves health-related quality-of-life (HRQoL): a time trade-off survey. Journal of medical economics. 2013; 16: 1357-65.

Disclosure

This study was funded by Novo Nordisk.

PRM192

N/a: not applicable; SMBG: self-monitored blood glucose; IGlar: insulin glargine; ^{*} QALYs calculated from utilities obtained from SF-36; [†] QALYs calculated from hypoglycaemic events disutilities.

ISPOR 20th Annual European Congress, Glasgow, Scotland, 4-8 November 2017